Information For Maintainers of GNU
Software

Richard Stallman
last updated 08 November 1994

Copyright (©) 1992, 1993, 1994 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

Chapter 2: Legal Matters 1

1 About This Document

This file contains guidelines and advice for someone who is the maintainer of a GNU program
on behalf of the GNU project. Anyone can change GNU software, but there’s no need
to pay attention to these guidelines unless you are maintaining a version for widespread
distribution.

Corrections or suggestions regarding this document should be sent to
gnu@prep.ai.mit.edu. If you make a suggestion, please include a suggested
new wording for it; our time is limited. We prefer a context diff to the maintain.texi file,
but if you don’t have that file, please mail your suggestion anyway.

This release of the GNU Maintenance Instructions was last updated 08 November 1994.

2 Legal Matters

When incorporating changes from other people, make sure to follow the correct procedures.
Doing this ensures that the FSF has the legal right to distribute and defend GNU software.

2.1 Copyrights

For the sake of registering the copyright on later versions of the software, you need to keep
track of each person who makes significant changes. A change of ten lines or so, or a few
such changes, in a large program is not significant.

Before incorporating significant changes, make sure that the person has signed copyright
papers and that the Foundation has received and signed them.

You can tell the person what papers to sign by email. For large changes, ask for an
assignment. Send the person a copy of /gd/gnuorg/assign.changes, but first, go to the
second page and insert the person’s name and the name of the program involved in place
of ‘NAME OF PERSON’ and ‘NAME OF PROGRAM’. Do this before sending, because otherwise the
person might sign without noticing them. Then the papers would be useless.

For medium to small changes, ask for a disclaimer. Use the file /gd/gnuorg/disclaim.changes.|]

To check whether papers have been received, look in /gd/gnuorg/copyright.list. If
you can’t look there directly, fsf-records@prep.ai.mit.edu can check for you, and can
also check for papers that are waiting to be entered and inform you when expected papers
arrive.

You can also send the person /gd/gnuorg/conditions.text, which explains his options
(assign vs. disclaim) and their consequences.

2.2 Recording Changes

Keep records of which portions were written by whom.

These records don’t need to be as detailed as a change log. They don’t need to distinguish
work done at different times, only different people.

They should say which files or functions were written by each person, and which files

or functions were revised by each person. They don’t need to say what the purpose of the
change was. The Register of Copyrights doesn’t care what the program does.

Chapter 4: Dealing With Mail 2

For example, this would describe an early version of GAS:

Dean Elsner first version of all files except gdb-lines.c and m68k.c.
Jay Fenlason entire files gdb-lines.c and m68k.c, most of app.c,
extensive changes in messages.c, input-file.c, write.c,
revisions elsewhere.

Please keep these records in a file named AUTHORS in the source directory for the program
itself.

3 Cleaning Up Changes

If someone sends you changes which are ugly and will make the program harder to under-
stand and maintain in the future, such as a port to another operating system containing ad
hoc conditionals, don’t hesitate to ask the person to clean up his changes before you merge
them.

Since the amount of work we do is constant in any case, the more work we get other
people to do, the faster GNU will advance.

If the person will not or can not make the changes clean enough, then say that you can’t
afford to merge them. Invite him to distribute his changes himself, or to find other people
who can make them clean enough for us to maintain.

The only reason to do these cleanups yourself is if (1) it is easy enough that it is less
work than telling the author what to clean up, or (2) users will greatly appreciate the
improvement, and you would almost write it yourself if you had time.

The GNU Coding Standards are a good thing to send people who have to clean up C
programs (see Section “Contents” in GNU Coding Standards). The Emacs Lisp manual
contains an appendix that gives coding standards for Emacs Lisp programs; it is good
to urge authors to read it (see Section “Tips and Standards” in The GNU Emacs Lisp
Reference Manual).

4 Dealing With Mail

Once a program is in use, you will start getting bug reports. Some GNU programs have
their own special lists for sending bug reports. For miscellaneous programs that don’t
have their own lists, we use a catch-all list, bug-gnu-utils@prep.ai.mit.edu. Talk with
gnu@prep.ai.mit.edu to arrange to be added to the proper list for your program.

When you receive bug reports, keep in mind that the main purpose of the bug reports
is to enable you to improve the next version of the program. Helping individuals is only
secondary. So you don’t need to give a substantial response unless you have a reason to
(for example, to ask for more information, or to ask the user to test a fix). But it is good
to respond to the rest of the bug reports with just “Thanks.” That is quick and tells the
user that the bug report was useful.

As a practical matter, any time you spend helping individuals beyond what is necessary
for you, takes time away from maintaining the program. While this may seem “friendly”
and “helpful,” actually it is counterproductive. If you help one person when you could
instead have helped thousands, the world is worse off.

Chapter 5: Recording Old Versions 3

5 Recording Old Versions

It is very important to keep backup files of all source files of GNU. You can do this using
RCS if you like. The easiest way to use RCS is via the Version Control library in Emacs;
Section “Concepts of Version Control” in The GNU Emacs Manual.

Alternatively, you can keep backup files.

5.1 Backup Files

Emacs makes a backup file by renaming the old source file to a new name. This means that
if the file is also pointed to by a distribution directory, the distribution directory continues
to point to the same version it always did—the right thing.

We want to keep more than one backup for all GNU sources. So, if you are going to edit
GNU sources, make certain to put

(setq version-control t)
into your .emacs file, so that Emacs always creates numbered backup files.

Using Emacs backup files works as long as people always make changes with Emacs.
If you change the file in some other way, and use cp, ftp, or tar to install it, you will
overwrite the old version and fail to make a backup. Don’t do that!

If you want to make a change to a source file with something other than Emacs, you can
write the changed file to another name, and use C-x C-w in Emacs to write it under the real
name. This makes the backup file properly.

You can use GNU cp or mv to install changed files if you give them the ‘--backup’ (or,
equivalently, ‘-b’) option; then they make backup copies the same way that Emacs does.
You should also use the ‘--version-control=t’ option, or, alternately, first

export VERSION_CONTROL=t

(or the csh equivalent); this makes GNU cp and mv create numbered backup files instead
of a single backup file with a ‘~’ appended to the filename. For installing many changed
files, you can use shell wildcards and also give GNU cp or mv the ‘--update’ (‘-u’) option,
which only copies (or moves) files that have been modified more recently than the existing
destination files, and the ‘--verbose’ (‘-v’) option, which prints the names of the files that
are actually copied (or moved).

Before you use mv or cp in this way, make sure it is the GNU version. Do ‘which mv’ (in
csh) or ‘type mv’ (in bash) to verify you are not getting /bin/mv (or likewise for cp). Or
just type ‘cp’ or ‘mv’ and look at the usage message.

5.2 Deleting Backup Files
Always answer no when Emacs offers to delete backup files automatically. The way to delete
them is by hand, using M-x dired.

When you decide which backup files to delete, it is good to keep one every couple of
weeks or so, going back about 2 months.

If there is a long gap between versions, because that file did not change during a long
period of time, then keep the version before the gap even if it is 2 months old. Pretend it

Chapter 6: Archives 4

is just 2 weeks older than the next kept version, so delete it when the next version is >= 6
weeks old.

If the changes in a program have been simple, then you don’t need to keep as many
backup files. Just one a month for 2 months is enough.

If you have made big changes, keep the versions before and after the big change, until
they are old enough.

If you made several changes the same day, usually the last version written that day is
best to keep.

It is almost always right to keep the most recent backup version.

6 Archives

For each program, you should keep a special magtape or cartridge as an archive. Each time
you release a new version, dd the tar file onto the end of the tape. Keep a list of versions
on the tape’s paper label, and add to it each time you add to the tape.

For cartridges, you can type
mt -f /dev/nrst8 eom
to go straight to the end of the data on the tape.

For reel-to-reel tapes, there is no automated way to go to the end of the data on the
tape. You have to count the number of files (based on the written label), and space forward
over them with ‘mt fsf’.

To be safe, it is important to check your count. If the count is n, then do:
mt -f /dev/nrmt8 fsf n-1
This puts you at the beginning of the last existing tar file.
Then do
tar tf /dev/nrmt8

to list that tar file. If the version number appears in a directory name, which is a good
idea, you can use this to verify that you have reached the tar file you wanted to reach.

C-c the tar before it finishes; then do
mt -f /dev/nrmt8 fsf
to skip past it and its end-of-file marker.
To copy the new distribution file onto cartridge tape, do:
dd if=tar-file-name of=/dev/nrst8 bs=102400
(This specifies a blocking factor of 200.)
For reel-to-reel tape, do:
dd if=tar-file-name of=/dev/nrmt8 bs=10240
(This specifies a blocking factor of 20.)
When the tape gets full, put it aside permanently and start writing another.

Chapter 7: Distributions 5

7 Distributions

It is important to follow the GNU conventions when making GNU software distributions.

7.1 Distribution tar Files

The tar file for version m.n of program foo should be named foo-m.n.tar. It should unpack
into a subdirectory named foo-m.n. Tar files should not unpack into files in the current
directory, because this is inconvenient if the user happens to unpack into a directory with
other files in it.

Here is how the Makefile for Bison creates the tar file. This method is good for other
programs.

dist: bison.info
echo bison-‘sed -e ’/version_string/!d’ \
-e ’s/[70-9.1%\([0-9.1%\).*/\1/’ -e q version.c‘ > .fname
-rm -rf ‘cat .fname°
mkdir ‘cat .fname°
dst=‘cat .fname‘; for f in $(DISTFILES); do \
1In $(srcdir)/$$f $$dst/$$f || { echo copying $$f; \
cp -p $(srcdir)/$$f $$dst/$$f ; F \
done
tar --gzip -chf ‘cat .fname‘.tar.gz ‘cat .fname‘
-rm -rf ‘cat .fname‘ .fname

Source files that are symbolic links to other file systems cannot be installed in the
temporary directory using 1n, so use cp if 1n fails.

7.2 Distribution Patches

If the program is large, it is useful to make a set of diffs for each release, against the previous
important release.

At the front of the set of diffs, put a short explanation of which version this is for and
which previous version it is relative to. Also explain what else people need to do to update
the sources properly (for example, delete or rename certain files before installing the diffs).

The purpose of having diffs is that they are small. To keep them small, exclude files that
the user can easily update. For example, exclude info files, DVI files, tags tables, output
files of Bison or Flex. In Emacs diffs, we exclude compiled Lisp files, leaving it up to the
installer to recompile the patched sources.

When you make the diffs, each version should be in a directory suitably named—for
example, gcc-2.3.2 and gcc-2.3.3. This way, it will be very clear from the diffs themselves
which version is which.

If you use GNU diff to make the patch, use the options ‘-rc2P’. That will put any new
files into the output as “entirely different.”

If the distribution has subdirectories in it, then the diffs probably include some files in
the subdirectories. To help users install such patches reliably, give them precise directions
for how to run patch. For example, say this:

To apply these patches, cd to the main directory of the program

Chapter 7: Distributions 6

and then use ‘patch -pl’. ‘-pl’ avoids guesswork in choosing
which subdirectory to find each file in.

It’s wise to test your patch by applying it to a copy of the old version, and checking that
the result exactly matches the new version.

7.3 Distribution on prep

Only the latest version of any program needs to be on prep. Being an archive of old versions
is not the function of prep.

Diffs are another matter. Since they are much smaller than distribution files, it is good
to keep the diffs around for quite a while.

7.4 Test Releases

When you release a greatly changed new major version of a program, you might want to
do so as a beta test release.

Once a program gets to be widely used and people expect it to work solidly, it is a good
idea to do pretest releases before each “real” release. This means that you make a tar file,
but send it only to a group of volunteers that you have recruited. (Use a suitable GNU
mailing list/newsgroup to recruit them.)

One thing that you should never do is to release a distribution which is considered a
pretest or beta test but which contains the version number for the planned real release.
Many people will look only at the version number (in the tar file name, in the directory
name that it unpacks into, or wherever they can find it) to determine whether a tar file is
the latest version. People might look at the test release in this way and mistake it for the
real release. Therefore, always change the number when you make a new tar file.

If you are about to release version 4.6 but you want to do a pretest or beta test first,
call it 4.5.90. If you need a second pretest, call it 4.5.91, and so on.

Table of Contents

1 About This Document

2 Legal Matters............ ...,

2.1 Copyrights . ..o
2.2 Recording Changesouuititeiii i,

3 Cleaning Up Changes...........................
4 Dealing With Mail

5 Recording Old Versions.........................

5.1 Backup Files
5.2 Deleting Backup Files ... i

6 Archives.

7 Distributions.........
7.1 Distribution tar Files
7.2 Distribution Patches.

7.3 Distribution on prep ...
7.4 Test Releases.o

	1 About This Document
	2 Legal Matters
	Copyrights
	Recording Changes

	3 Cleaning Up Changes
	4 Dealing With Mail
	5 Recording Old Versions
	Backup Files
	Deleting Backup Files

	6 Archives
	7 Distributions
	Distribution tar Files
	Distribution Patches
	Distribution on prep
	Test Releases

